UISE International Journal of Health Sciences and Research

www.ijhsr.org

ISSN: 2249-9571

Original Research Article

Prevalence and Antibiogram of *Acinetobacter* **spp. Isolated from Various Clinical Samples in a Tertiary Care Hospital, Bathinda**

Amandeep Kaur^{1*}, Amarjit Kaur Gill^{2*}, Satnam Singh^{3**}, Narinder Kaur^{4*}, Anchal Mahajan^{3*}, Vivek Mittal⁴

¹Assistant Professor & PhD Student, ²Professor and Head, ³Assistant Professor, ⁴Associate Professor, ^{*}Department of Microbiology, Adesh Institute of Medical Sciences and Research, Bathinda. ^{*}Department of Pharmacology, Adesh Institute of Medical Sciences and Research, Bathinda. ****Dept of Anaesthesiology and Intensive Care, Adesh Institute of Medical Sciences and Research, Bathinda.

Corresponding Author: Amandeep Kaur

Received: 02/05/2016

Revised: 18/05/2016

Accepted: 20/05/2016

ABSTRACT

Introduction: Acinetobacter, once considered as an opportunistic pathogen has recently emerged as an important nosocomial pathogen. An increase in antibiotic resistance among isolates of the organism during recent years has made these infections difficult to treat.

Material & methods: The study was conducted to determine prevalence and antibiotic susceptibility pattern of Acinetobacterspp isolated from various clinical samples collected from patients admitted in Intensive care unit and various wards of the hospital over a period of one year (July 2015 to June 2015).

Results: Out of 950 clinical samples, 460 (48.4%) yielded significant growth and out of these positive cultures; 47 (10.2%) Acinetobacterspp were isolated. Majority of isolates (68.1%) were obtained from Intensive Care Unit. Maximum sensitivity of Acinetobacterspp was seen towards polymyxin B (97.8%), colistin (95.8%) followed by imipenem (57.4%) and meropenem (44.6%). Thirty six (76.6%) isolates were found to be multidrug resistant.

Conclusion: To avoid resistance, antibiotics should be used judiciously and empirical therapy should be determined for each hospital according to the resistance rates of the hospital.

Key words: Acinetobacterspp, antimicrobial resistance, Intensive care unit.

INTRODUCTION

Members of genus Acinetobacter are ubiquitous, free-living and saprophytic bacilli that can be obtained easily from soil, water, food and sewage. Acinetobacter has undergone significant taxonomic modification over last 30 yrs. It's most important representative is Acinetobacter baumannii and other species such as -Acinetobacter lwoffii, Acinetobacter haemolyticus and Acinetobacter johnsonii [1] are rarely isolated from patients. considered Acinetobacter. once as opportunistic pathogen has recently

emerged as an important nosocomial pathogen world over, mostly involving patients with impaired host defense.^[2] The increased risk of infection is associated with the severity of patient's illness, length of exposure to invasive devices and procedures, increased risk of patient contact with health care personnel and length of stay in ICU.^[3] Human infections caused by Acinetobacterspp include pneumonia, which is most often related to endotracheal tubes or tracheostomies, endocarditis, iatrogenic meningitis, skin and wound infections, peritonitis in patients receiving peritoneal

dialysis, UTI and bacteremia.^[1] In addition to infection among hospitalised patients, acquired Acinetobacter community infection is increasingly reported. ^[4] An increase in antibiotic resistance among isolates of the organism during recent years has made these infections difficult to treat. [5] Resistance mechanisms that are expressed frequently in nosocomial strains of Acinetobacter include: β-lactamases which are either chromosomally encoded or borne on plasmids or transposons, alteration in cell wall channels (porins) and efflux pumps.^[2] Because of frequent resistance to amino glycosides. fluoroquinolones, ureidopenicillins and third generation cephalosporins, carbapenems have been the drug of choice for treating Acinetobacter infections. ^[4-6] However, there has been alarming increase in reports of carbapenem resistant Acinetobacterspp. Over the last [6] decade. carbapenem resistance in Acinetobacter is attributed to various causes such as reduced expression of outer membrane proteins (29kDa, 33-36kDa) and carbapenamases β-lactamases. A .baumannii is known to produce following metallo βlactamases (MBL's)-IMP-1, 2, 4, 5 and VIM-1 and 2.^[6]

The most active agents in vitro against multidrug resistant A. baumannii are polymyxins-Polymyxin B and Polymyxin E (colistin) and tigecycline. ^[7] Clinicians abandoned polymyxins in 1960's and 1970's due nephrotoxicity and neurotoxicity, The emergence of multidrug resistant(MDR) gram negative bacilli has brought polymyxins back into use in lower doses and different drug formulations.^[2] There is a significant difference in behaviour and spread of MDR Acinetobacterspp recovered from various geographical locations.^[8] Since several factors cause resistance in Acinetobacterspp, treatment of infections caused by this organism should be based upon susceptibility tests. Therefore, having information regarding prevalence and pattern of bacterial resistance to various antibiotics is important. ^[9,10] Thus the objective of the study was to determine antibiotic sensitivity pattern of Acinetobacterspp isolated from various clinical samples collected from patients admitted in ICU and various wards of hospital of Adesh Institute of Medical Sciences and Research (AIMSR), Bathinda. The study was conducted after due approval was obtained from Institutional Ethical Committee and Research Degree Committee.

MATERIALS AND METHODS

The present study was conducted in Microbiology, Department of Adesh Institute of Medical Sciences and Research, Bathinda and included Acinetobacterspp isolated from various clinical samples over a period of one year. (July 2014 to June 2015) A total of 950 clinical samples such as pus, urine, blood, tracheostomy and endotracheal tube tips, tracheal aspirate CSF and other body fluids were collected from patients admitted in ICU and different wards of hospital. The samples were inoculated on Blood Agar and MacConkey Agar plates. All isolates obtained were further processed and identified by routine microbiological and biochemical tests. Genus Acinetobacter was identified by Gram staining as Gram negative coccobacilli, colony morphology, non-motile, oxidase negative, catalase positive, TSI reaction K/K and citrate utilisation test positive. Speciation of Acinetobacter (A. baumannii and A. lwoffii) was done on the basis of glucose oxidation(OF test) and growth at 37 C and 44 C. ^[11,12] Antibiotic susceptibility testing was performed by standard Kirby Bauer disc diffusion method ^[13] for following antimicrobial agents-ceftazidime (30ug). cefepime (30 µg)), piperacillin-tazobactam $(100\mu g)/10 \mu g)$, Ampicillin-sulbactam (10 µg)/10 Imipenem (10)μg)), μg)), Meropenem (10 μ g)), Gentamicin (10 μ g)), Amikacin (30 μ g)), Cotrimoxazole (25 μ g)), Ciprofloxacin (5 µg)), Norfloxacin (30 µg)) (for urinary isolates), Polymyxin B (300 units) and Colistin (10 µg). The zones of inhibition were measured and interpreted

according to CLSI guidelines. ^[14] All dehydrated media and antibiotic discs were procured from Hi Media Labs, Mumbai, India.

RESULTS

Out of total 460 culture positive samples, 47 (10.2%) infections were due to

Acinetobacter. [Table I] There was higher incidence of Acinetobacter infection in males (56%) than females (44%). Acinetobacterspp was more common in patients with age group of 21-40yrs (28; 59.4%). The mean age group of patients infected with Acinetobacterspp was 38 yrs.

Total samples processed	950
Total culture positive samples	460(48.4%)
Gram negative bacteria isolated out of culture positive samples	315(68.4%)
Total Non-fermenting Gram negative bacilli (NFGNB) isolated among all Gram negative bacteria	151(47.9%)
Acinetobacterspp isolated among NFGNB	47(31.1%)
Prevalence of Acinetobacterspp among total culture positive samples	10.2%

Acinetobacterspp were predominantly isolated from respiratory samples (24; 51%) followed by pus (13; 27.6%); urine (6; 12.7%); Intercostal drain tube (2; 4.2%) blood (1; 2.1%) and CSF (1; 2.1%) [Table II]

Table II: Acinetobacterspp isolated from various samples (N=47)

Type of sample	No. of isolates n (%)
Tracheostomy tube tips	13(27.6%)
Endotracheal tube tips6	(12.7%)
Tracheal aspirate	4(8.5%)
Endotracheal secretion	1(2.1%)
Pus	13(7.6%)
Urine	6(12.7%)
Intercostal drain tube tips	2(4.2%)
Blood	1(2.1%)
CSF	1(2.1%)

A. baumannii (39; 87.2%) was the predominant species followed by *A. lwoffii* (6; 12.8%) [Table III]

Table III: Acinetobacterspp isolated (N=47)			
No. of isolates	Percentage		
41	87.2%		
06	12.8%		
	No. of isolates 41		

Maximum *Acinetobacterspp* were isolated from ICU (32; 68.1%) followed by

surgery ward (8; 17%), medicine ward (2; 4.25%), gynaecology ward (2; 4.25%), orthopaedic ward (3; 6.4%). Maximum resistance was recorded to ceftazidime (97.8%) and maximum sensitivity of *Acinetobacters*pp was seen towards polymyxin B (97.8%) and colistin (95.8%) followed by imipenem (57.4%) and meropenem (44.6%). Norfloxacin was tested only in urinary isolates and 66.6% isolates were resistant to this antibiotic. [Table IV]

Out of 47 isolates, 36 (76.6%) were MDR (Isolates resistant to at least one agent in three or more antimicrobial categories penicillins, cephalosporins, amino glycosides, fluoroquinolones and [15,16] carbapenems) Acinetobacter baumannii was found to be more resistant than Acinetobacter lwoffii, therefore maximum resistance was observed in ICU isolates in comparison to wards where A. *baumannii* was more prevalent.[Table V]

Antibiotic tested	No. of sensitive isolates (%Sensitivity)	No. of resistant isolates (%Resistance)	
Ceftazidime	01(2.2%)	46(97.8%)	
Cefepime	02(4.2%)	45(95.8%)	
Ampicillin-sulbactam	08(17.1%)	39(82.9%)	
Imipenem	27(57.4%)	20(42.6%)	
Meropenem	21(44.6%)	26(55.4%)	
Piperacillin-Tazobactam	07(14.8%)	40(85.2%)	
Cotrimoxazole	03(6.4%)	44(93.6%)	
Ciprofloxacin (in 41 isolates)	03(7.3%)	38(92.6%)	
Norfloxacin(in 6 urinary isolates)	02(33.3%)	04(66.6%)	
Gentamicin	08(17.1%)	39(82.9%)	
Amikacin	06(12.7%)	41(87.3%)	
Polymyxin B	46(97.8%)	01(2.2%)	
Colistin	45(95.8%)	02(4.2%)	

Table IV: Antibiotic sensitivity and resistance pattern of Acinetobacterspp to various antibiotics

Name of antibiotic	Total no. of resistant isolates	ICU (N=32) n(%)	Wards (N=15) n (%)
Ceftazidime	46	32(100%)	14(93.3%)
Cefepime	45	32(100%)	13(86.6%)
Ampicillin-sulbactam	39	28(87.5%)	11(34.3%)
Imipenem	20	16(50%)	4(25%)
Meropenem	26	19(59.3%)	7(46.6%)
Piperacillin-Tazobactam	40	28(70%)	12(80%)
Cotrimoxazole	44	31(96.8%)	13(86.6%)
Ciprofloxacin (in 41 isolates)	38	30(78.9%)	8(53.3%)
Norfloxacin (in 6 urinary isolates)	04	03(75%)	01(25%)
Gentamicin	39	29(90.6%)	10(66.6%)
Amikacin	41	30(93.7%)	11(73.3%)
Polymyxin B	01	01(3.1%)	0(0%)
Colistin	02	02(6.2%)	0(0%)

Table V: Comparison between antibiotic resistances of Acinetobacterspp isolated from ICU and wards

DISCUSSION

In our study, from 460 bacterial isolates, 47 (10.2%) Acinetobacterspp were obtained. Similar prevalence of 14% and 9.6% was reported by Mostofi et al. in Tehran, Iran and Joshi et al. in Pune. [17,18] Lesser prevalence rates of 3.36% and 3% of total organisms isolated was reported by Guptaet al. in Pune and Dash et al in [19,4] Odisha. Our prevalence of Acinetobacterspp from total Gram negative bacteria is 15% which is slightly higher than Jaggi et al. (9.4%)^[20] In the present study, 32 (68%) isolates were from critical care setting and source was most often respiratory samples which is similar to studies by Rekha et al. (70%) and Nahar et al. (68%) [5,21] This is probably related to increasingly invasive diagnostic procedures used ,greater quantity of broad spectrum antimicrobials used and prolonged duration of stay in hospital ^[4,5] 32% isolates were obtained from various wards; predominantly surgery ward. This is comparable to studies by Jaggi *et al.* and Rekha *et al.* [Table VI]

 Table VI: Acinetobacterspp isolated from ICU and IPD compared with other studies

Department	Jaggi et al	Rekha et al	Present study
ICU	76.8%	76.5%	68.1%
IPD	23.2%	23.5%	31.9%

According to literature, amongst Acinetobacterspp, commonest species isolated in human clinical specimens *is A. baumannii.* ^[1] We also observed that 87.2% isolates were *A. baumannii* whereas remaining 12.8% isolates were A. lwoffii. This is also in concordance with study done by Parandekrar PK and Peerapur BV, Bijapur, Karnataka, who have reported 86.3% isolates as *A. baumannii* and 13.7% isolates as *A. lwoffii*^[22]

In the present study, Acinetobacterspp were found to be resistant to most commonly used antibiotics. Acinetobacter isolates were extremely resistant to ceftazidime (97.8%); cefepime (95.8%) and cotrimoxazole (93.6%). Higher level of resistance was also recorded for Ampicillin-sulbactam (82.9%) Piperacillin tazobactam (85.2%); amikacin and ciprofloxacin (92.6%). This correlates with the studies by JaggiN et al. ^[20] and Kalidas et al. ^[23] Resistance towards imipenem and meropenem was recorded to be 42.6% and 55.4% respectively. A study by Dash et al. ^[4] also reported more resistance towards meropenem (22%) as compared to imipenem (19%). Sinha Mand Srinivasa H reported carbapenem resistance in Acinetobacter isolates as 50% ^[6] Lower resistance (2.2% - 4.2%)was seen Polymyxin B and Colistin in our study. Various authors have reported resistance rates of Acinetobacter towards colistin between 1.8% to 2.0%. ^[4] Taneja *et al.* ^[24] Nahar *et al.* ^[21] and Kalidas *et al.* ^[23] recorded 3.5%; 10.5% and 5% resistance of Acinetobacter towards colistin respectively. In a study published by Dash et al .and Shareek et al. all isolates were sensitive to colistin. ^[4,25] Comparison of percentage resistance of Acinetobacterspp isolated in present study and other studies in India by Jaggi et al. in Gurgaon^[20] and Kalidas et al. ^[23] in Eastern India is shown in Table VII

Antibiotic	Present study	Jaggi et al Gurgaon	Kalidas et al Eastern India
Ceftazidime	97.8%	92.1%	73.8%
Cefepime	95.8%	90.3%	Not tested
Imipenem	42.6%	89.6%	13.7%
Meropenem	55.4%	89.6%	Not tested
Piperacillin+ Tazobactam	85.2%	89.7%	62.3%
Cotrimoxazole	93.6%	Not tested	93.5%
Ciprofloxacin	92.6%	91.6%	80.4%
Gentamicin	82.9%	85.8%	75.5%
Amikacin	87.3%	90.3%	37.8%
Polymyxin B	2.2%	2.0%	Not tested
Colistin	4.2%	2.0%	5%

Table VII: Comparison of resistance of Acinetobacterspp with other studies in India

Out of total isolates 36 (76.6%) were multidrug resistant (MDR) in our study. The other studies conducted by Dash *et al.* in Odisha and Rekha *et al* in Kolar, Karnataka reported MDR isolates to be 55% and 74% respectively. ^[4,5] Bhattacharya *et al.*; ^[26] Gupta *et al.* ^[19] and Mostofi *et al.* ^[17] reported MDR isolates to be 29%; 40% and 54% respectively.

In this study, 95% isolates obtained from intubated patients were MDR. Emine *et a*l from Turkey reported that all isolates obtained from intubated patients were MDR. ^[27]

Acinetobacter appears to have a propensity to develop antibiotic resistance extremely rapidly, perhaps as a consequence of it's long term evolutionary exposure to antibiotic producing organisms in soil environment. The emergence of antibiotic resistant strains in ICU is because of higher of use of antimicrobial agents per patient and per surface area. ^[19] Susceptibilities of Acinetobacter against antimicrobials are considerably different among countries, centers and even among different wards of the same hospital. Therefore, such types of local surveillance studies are around important in deciding the most adequate therapy for *Acinetobacter* infections.^[21]

CONCLUSION

Acinetobacter is nowadays common threat in hospital acquired infections especially in critically ill patients admitted to ICU. It is a great challenge for the physicians to treat MDR Acinetobacterspp. Acinetobacterspp in our study were found to be resistant to most commonly used antibiotics. Emergence of carbapenem resistance is worrisome. Lower resistance was only in Polymyxin B and colistin. However, colistin resistant Acinetobacterspp are emerging slowly. Rational use of antibiotics is necessary to prevent microbial resistance catastrophe. Resistant antibiotics after sensitivity report should be discontinued and in place sensitive drug should be chosen. Though the developed multidrug organism has resistance, it has largely remained susceptible to disinfectants and antiseptics. Thus, the prevention involves aseptic care of vascular catheters and endotracheal tubes, proper disinfection of surfaces with which the patient comes in contact and through hand hygiene of health care workers. To avoid resistance, antibiotics should be used judiciously and empirical therapy should be determined for each hospital according to the resistance rates of the hospital.

REFERENCES

- 1. Winn W Jr, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P *et al.* Non fermenting Gram negative bacilli In: Koneman'scolor Atlas and textbook of Diagnostic Microbiology. 6th ed. USA: Lippincott Williams and Wilkins Company; 2006. P.305-91.
- MushtaqS, JaveidI, Hassan M. Antibiotic sensitivity pattern of *Acinetobacter* species isolated from clinical specimens in a tertiary care hospital.*Biomedica*2013; 29:23-263.
- 3. Fridkin SK. Increasing prevalence of antimicrobial resistance in intensive care units. *JCrit Care Med* 2001:29:64-68
- 4. Dash M, PadhiS, PatnaikS, MohantyI, Misra P. Frequency,risk factors and

antibiogram of *Acinetobacter* species isolated from various clinical samples in a tertiary care hospital in Odisha, India. *Avicenna J Med* 2013; 3(4):97-102.

- Rekha S, Gokul BN, Beena PM, Prasad SR. Multidrug resistant Acinetobacter isolates from patients admitted at Kolar. *J Clin Biomed Sci.* 2011; 1:3-7.
- 6. Sinha Mand Srinivasa H. Mechanisms of resistance to carbapenems in meropenem resistant Acinetobacter isolates from clinical samples. *IJMM* 2007; 25(2):121-5.
- Urban C, Segal-Maurer S, Rahal JJ. Considerations in control and treatment of nosocomial infections due to multidrug resistant Acineto bacterbaumannii. *Clin Infect Dis* 2003; 36:1268-1274.
- Houang ET, Chu YW, Leung CM, Chu KY, Berlau J, Ng KC, et al. Epidemiology and infection control implication of *Acinetobacter* spp. in Hong Kong. *J Clin Microbiol*.2001; 39:228-34.
- 9. Halstead DC, Abid J, Dowzicky MJ. Antimicrobial susceptibility among *Acinetobacter* calcoaceticusbaumannii complex and Enterobacteriaceae collected as a part of the tigecycline evaluation and surveillance trial. *J Infect*. 2007; 55:49-57.
- Scott P, Deye G, Srinivasan A, Murray C, Moran K, Hulten E, et al. An outbreak of multidrug-resistant *Acinetobacter* baumannii-calcoaceticus complex infection in the US military health care system associated with military operations in Iraq. *Clin Infect Dis*.2007; 44:1577-84.
- Baron EJ, Peterson LR, Finegold SM. Nonfermentative gram negative bacilli and coccobacilli. In: Shanahan JF, Potts LM, Murphy C, editors. Bailey and Scott's Diagnostic Microbiology. 9th ed. St. Louis, Missouri: Mosby-Year Book; 1994. pp. 386-4.
- Collee JG, Miles RS, Watt B. Tests for identification of bacteria. In: Collee JG, Fraser AG, Marmion BP, Simmons A, editors. Mackie and Mc Cartney Practical Medical Microbiology. 14th ed. Singapore: Churchill Livingstone; 2006. pp. 131-49.

- Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J ClinPathol. 1966; 45:493-6.
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 22nd informational supplement, CLSI document M100-S22. Wayne PA: Clinical and Laboratory Standards Institute; 2012.
- 15. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug resistant, extensively drug resistant and pandrug resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. *ClinMicrobiol Infect.* 2012; 18:268-81.
- 16. Adams-Haduch JM, Paterson DL, Sidjabat HE, Pasculle AW, Potoski BA, Muto CA, et al. Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania. Antimicrob Agents Chemother. 2008; 52:3837-43.
- 17. Mostofi S, Mirnejad R, Masjedian F. Multi-drug resistance in *Acinetobacter baumannii*strains isolated from clinical specimens from three hospitals in Tehran-Iran. *Afr J Microbiol Res.* 2011; 5:3579-82.
- Joshi SG, Litake GM, Satpute MG, Telang NV, Ghole VS, Niphadkar KB. Clinical and demographic features of infection caused by Acinetobacter species. *Indian J Med Sci*.2006; 60:351-60.
- 19. Gupta N, Gandham N, Jadhav S, Mishra RN. Isolation and identification of *Acinetobacter* species with special reference to antibiotic resistance. *J Nat Sc Biol Med.* 2015; 6:159-62.
- 20. Jaggi N, Sissodia P, Sharma L. Acinetobacter baumannii isolates in a tertiary care hospital: Antimicrobial resistance and Clinical significance. Journal of Microbiology and Infectious Diseases 2012; 2(2):57-63.
- 21. Nahar A, Anwar S, Saleh AA, Miah RA. Isolation of Acinetobacter species and their antimicrobial resistance pattern in an Intensive Care Unit (ICU)

of a tertiary care hospital in Dhaka, Bangladesh. *Bangladesh J Med Microbiol* 2012; 06(01):03-06.

- 22. Parandekar K, Prashant, Peerapur V. Basvaraj. Non-fermenters in human infections withspecial reference to *Acinetobacterspp* in a tertiary care hospital from North Karnataka, India *JKIMSU* 2012; (1):84-88.
- 23. Kalidas RIT, Falguni NAG, Hirak JR, Maity PK. Prevalence and susceptibility profiles of Non-fermentative Gramnegative bacilli infection in a tertiary care hospital of Eastern India. *Indian Journal of Clinical Practice* 2013; 24(5):451-55.
- 24. Taneja N, Singh G, Singh M, Sharma M. Emergence of tigecycline and colistin resistant *Acinetobacter* baumannii in patients with complicated urinary tract infections in north

India. *Indian J Med Res.* 2011; 133:681-4.

- 25. Shareek Sureshkumar PS, D. Ramagopalakrishnan S. Ramasubramanian V. Abdul Ghafur K. Thirunarayanan MA. Antibiotic sensitivity pattern of blood isolates ofAcinetobacter species in a tertiary care hospital: А retrospective analysis. Am J Infect Dis. 2012; 8:65-9.
- 26. Bhattacharyya S, Bhattacharyya I, Rit K, Mukhopadhyay PK, Dey JB, Ganguly U. et al. Antibiogram of Acinetobacter spp. from isolated various clinical specimens in a tertiary care hospital, West Bengal, India. Biomed Res. 2013; 24:43-6.
- 27. Emine A, Mehmet Y, Sesin K, Gokhan M, Duygu E, Yesim G. *Turk J Med Sci* 2009; 39(5):761-69.

How to cite this article: Kaur A, Gill AK, Singh S et al. Prevalence and antibiogram of *acinetobacter* spp. isolated from various clinical samples in a tertiary care hospital, Bathinda. Int J Health Sci Res. 2016; 6(6):83-89.
