Cut & Place: A New Technique for Pterygium Surgery with Conjunctival Autograft

Sethia Rajni V¹, Kothari Raghunanadan N², Shah Harita G³, Patel Krunal M¹, Shah Ruta S⁴

¹Assistant Professor, ²Professor & HOD, ³3rd Year Post Graduate, ⁴2nd Year Post Graduate, Department of Ophthalmology, Dhiraj Hospital, SBKSMIRC, Vadodara, Gujarat, India.

Corresponding Author: Sethia Rajni V.

ABSTRACT

Background: Sutureless glueless conjunctival autografting in pterygium surgery is gaining popularity due to short surgical time, no recurrence and good cosmetic outcome.

Aims: To study the efficacy, safety and reliability, post operative recovery, complications and recurrence rate of pterygium with glueless and sutureless conjunctivo-limbal autograft for the management of primary pterygium.

Materials and Methods: This was prospective, non comparative, interventional case series of 40 consecutive eyes with primary nasal pterygium requiring surgical excision. After pterygium excision, conjunctival autograft was taken from the superotemporal limbus and the bare sclera was covered with glueless and sutureless conjunctival autograft. Patching was done for 24hours and followed up post operatively on day 1, one week, one month, 3 months and 6 months. They were examined for graft dehiscence, graft recession, graft retraction, chemosis, recurrence or any other complications on each follow-up.

Results: The study included 19 males and 21 females. All grafts were intact in first follow up. 22.5% had medial edge graft recession on 1 week follow up. 5% had graft retraction on 1 month follow up, 2.5% had graft edema on 1 week follow-up and there was no graft dehiscence. No recurrence of pterygium was found till 6 month follow up.

Conclusion: Glueless and sutureless conjunctival autograft is a good option for pterygium surgery. It takes short surgical time and easy to perform, less patient discomfort, excellent cosmetic outcome and no recurrence.

Key words: Pterygium, Conjunctivo-limbal autograft, Tissue glue, Suture.

INTRODUCTION

Pterygium is a common ocular disorder in many parts of the world with prevalence rates from 0.3 to 29%. [¹,²] It is a degenerative condition of the subconjunctival tissues which proliferate as vascularized granulation tissue to invade the cornea, destroying the superficial layers of the stroma and bowman’s membrane, the whole being covered by conjunctival epithelium. [³] Epidemiological studies suggest an association between chronic exposure to sunlight and increased geographical prevalence of pterygium, within a periequatorial belt extending 37 degree north and south of equator which includes India.

The UV type B light in solar radiation has been found to be the most significant environmental factor in pterygium pathogenesis. [¹,²] Recent
studies have suggested that p53 and human papilloma virus may also be implicated in pterygium pathogenesis. UV radiation can cause mutation in genes such as the p53 tumor suppressor gene, resulting in its abnormal expression in pterygium epithelium. Heredity and limbal stem cell deficiency are the other causative factors. [⁴]

Pterygium warrants treatment when it encroaches upon the visual axis induces significant astigmatism or becomes cosmetically bothersome.

Surgical excision of pterygium is the most widely accepted modality of treatment with adjuvant measures to reduce recurrence. Due to high recurrence rates, there have been constant ongoing efforts to find a technique which results in least recurrence rate and least post-op discomfort. The various techniques developed for treatment of pterygium are bare sclera technique, transposition of pterygium to fornix (Mc Reynolds operation), excision with simple closure of wound, limbal conjunctival autograft and amniotic membrane graft. Among all these techniques limbal conjunctival autograft is the best method because of low recurrence and high safety. [⁵-⁸]

The most common method of autograft fixation is suturing, which has drawbacks of prolonged operating time, postoperative discomfort, suture abscesses, button holes and granuloma formation which usually requires a second procedure for removal. [⁹]

Graft fixation with commercial fibrin glue is another good option, however it is expensive and has higher risk of infection and may cause allergic reactions in some patients. [¹⁰]

The amniotic membrane is known to contain a thick basement membrane and a vascular streamed matrix. [¹¹,¹²] Both these features are crucial to the observed success. The basement membrane facilitates migration of epithelial cells, reinforces adhesion of basal epithelial cells, promotes epithelial differentiation and prevents epithelial apoptosis. Collectively, these actions explain why the amniotic membrane permits rapid epithelialisation but amniotic membrane grafts are less proficient than conjunctival autografts in reducing recurrences after pterygium excision.

Considering these aspects of amniotic membrane grafting and problems associated with sutures and fibrin glue, we planned to study the management of pterygium excision with conjunctival auto graft without using sutures and glue. We tried to evaluate the efficacy, safety and recurrence after pterygium excision in accordance with patient comfort and cost effectiveness.

MATERIALS AND METHODS

After obtaining approval by ethical committee, a prospective clinical study of 40 consecutive cases undergoing primary nasal pterygium excision with conjunctivo-limbal autograft without using human fibrin tissue adhesive or suture was conducted in Department Of Ophthalmology from March 2014 to October 2014. Informed and written consent was obtained from all the patients.

Surgical intervention was indicated in the patients having progressive primary nasal pterygium, dimness of vision because of marked astigmatism due to pterygium, marked cosmetic deformity and age between 20-60 years. Recurrent pterygium, pseudopterygium and patient having history of taking anticoagulants, ocular surface diseases like dry eye, blepharitis, sjogren’s syndrome were excluded from the study. The cases were followed upto six months period for recurrence and any other complications.

All cases underwent preoperative comprehensive ophthalmic examination including visual acuity, slit lamp, IOP with applplanation tonometry, topography, and dilated fundus examination with 78D /90D lens and schirmer’s test. Laboratory
investigations like random blood sugar level, bleeding time, clotting time and activated partial prothrombin time done.

A single experienced surgeon performed all pterygium surgeries under peribulbar anesthesia with injection xylocaine (2%). The eyelids were disinfected with 5% povidone-iodine and the eyelids and skin were covered with a sterile plastic drape. Pterygium head and cap over cornea were dissected with 15 no. blade followed by dissection of body of pterygium from sclera. The size of the bare area over the sclera was measured with castoveijo calliper and marked with povidine-iodine. For harvesting the donor limbal conjunctival autograft, 0.5ml of xylocaine was injected in superotemporal quadrant using 26 1/2 G needle subconjunctivally to allow dissection between the conjunctiva and tenon’s layer. An autograft of the size equal to the size of the bare sclera was dissected including the superior limbal stem cells. The graft was placed on the sclera bed, with epithelial side up maintaining the original orientation of the juxtalimbal border towards the cornea. The scleral bed is viewed through the transparent conjunctiva and to ensure residual bleeding does not relift the graft the whole graft was compressed gently with iris repositor and small central haemorrhages were tamponaded with direct compression using cotton bud until haemostasis was achieved. After 5-6 min, when the graft was stabilized eye was pad and patched using antibiotic-steroid eye drops with lubricating gel.

Patients were reviewed after 24 hours and discharged on topical antibiotic-steroid eye drops 4 times a day and topical HPMC gel twice a day in the operated eye. They were advised not to rub and squeeze the operated eye. All the patients were followed up at one week, one month, three months and six months. They were examined for subgraft haemorrhage, graft dehiscence, graft rejection, graft retraction, chemosis, recurrence or any other complications.

Ethics: This study was conducted after obtaining approval by ‘Sumandeep Vidyapeeth Institutional Ethical Committee’. This was a prospective, non comparative and interventional case series conducted adhering to the Declaration of Helsinki.

RESULTS

<table>
<thead>
<tr>
<th>Table: 1 Demographic Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Of Eyes</td>
</tr>
<tr>
<td>OD</td>
</tr>
<tr>
<td>OS</td>
</tr>
<tr>
<td>Location</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Mean Age</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table: 2 Post-Operative Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medial edge recession</td>
</tr>
<tr>
<td>Graft retraction</td>
</tr>
<tr>
<td>Graft edema</td>
</tr>
<tr>
<td>Visual Acuity Improvement</td>
</tr>
<tr>
<td>Graft dehiscence</td>
</tr>
<tr>
<td>Recurrence rate</td>
</tr>
<tr>
<td>Subgraft Haemorrhage</td>
</tr>
</tbody>
</table>

Total 40 cases underwent pterygium excision with conjunctival autograft without glue and without suture. Our study comprised of 19 male and 21 female patients with age ranging from 30 to 60 years (Table-1). All of them had primary nasal pterygium and were followed up for six months post-operatively. Mean graft size was 10x5 mm and average surgical time was 15min. Medial edge graft recession was observed in 9 cases (22.5%) and graft retraction in 2 cases (5%). 1 case (2.5%) had graft edema and thickening on follow up. Improvement in visual acuity noted in 6 cases (15%). Recurrence was none. Graft dehiscence and subgraft haemorrhage was not seen in any case (Table-2) (Figure-3). None of the patients had complaint of pain, foreign body sensation and chemosis on follow up. All patients were highly satisfied.
The various surgical techniques for treatment of pterygium are bare scleractin technique, transposition of pterygium to fornix (Mc Reynolds operation), excision with simple closure of wound, with adjuvant therapies to reduce recurrence like beta irradiation, thiotepa, mitomycin c, 5-fluorouracil, conjunctival autograft, limbal stem cell transplant, amniotic membrane graft and buccal mucosal graft. Ablation with Erbium YAG laser and smoothening of corneal surface with excimer laser has also been tried. Sutureless and glue free conjunctival autograft is a newly evolving technique.

Bare sclera technique has an unacceptably high recurrence rate and scleral melting may occur by this technique.\[17,18\]

Pterygium excision with beta-irradiation is associated with significant complications, most notably scleral necrosis which may occur many years later and lead to endophthalmitis.\[15,19\]

Pterygium excision with adjunctive mitomycin C therapy is associated with scleral ulceration, necrotizing scleritis, perforation, iridocyclitis, cataract, infection, glaucoma, scleral calcification,\[15,20\] while the safety of mitomycin C therapy remains to be determined with future long-term trials. After surgical excision, placing mitomycin C is a simple and time-saving method with a low recurrence rate. Patients should be followed up for a long time.

Pterygium excision with amniotic membrane graft had a higher recurrence rate than conjunctival autograft.\[21\] However, it is an alternative choice, especially for advanced cases with bilateral heads or patients who might need glaucoma surgery later.

The debate over the best approach to pterygium excision surgery with conjunctival autograft has been going on since decades, whether to use sutures or fibrin glue to affix the conjunctival
autograft. Both approaches have their pros and cons in terms of factors like procurement of fibrin glue from human plasma, the risk of transmitting diseases and hypersensitivity to fibrin. [22,23] Most commonly hepatitis A and parvovirus B19 are prone to get transmitted through glue. The fibrinogen compounds may also be susceptible to inactivation by iodine preparations such as those used for conjunctival disinfection before pterygium surgery. [22,23]

Use of sutures has it’s own problems like astigmatism, delayed wound healing and fibrosis. [9] Complications such as pyogenic granuloma formation, symblepharon, fornical contracture, ocular motility restriction, diplopia, scleral necrosis and infection have also been reported and are much more difficult to manage and may prove sight threatening. [10]

Recurrence after a successful excision continues to remain a challenge for pterygium surgery. Generally, the pterygium recurrences occur during the first 6 months after surgery. [15] Various methods have been tried to overcome this problem with varying results. Recurrence rates following bare sclera resection range from 24% to 89%. [24,25] bare sclera resection with mitomycin-C application between 0% to 38%, [15] and with amniotic graft between 12% to 40% [21] in primary pterygium. Bruce D S Allan et al [26] reported the recurrence rate between 3% and 35% in their case series of 85 patients of pterygium excision with conjunctival autograft with sutures. The lowest recurrence rate is reported with conjunctival grafting using autologus blood which varies from 0% to 6%. [23,27 - 32] Securing the conjunctival graft using autologus blood may prove a promising alternative approach for conjunctival grafting after pterygium excision.

There was no recurrence in our case series of 40 cases. Similar results were reported in D de Wit, I Athanasiadis et al [27] study of 15 cases and Jawed Alam, Himadri Bhattacharjya et al [28] study of 30 cases. However, P. Subhajit Singh, Amar Kanti Chakma et al [29] reported recurrence in 1 case out of 50 cases and Malik KPS et al [30] reported recurrence in 1 case out of 40 cases while Shaaban A.M. et al [31] observed recurrence in 3 cases out of 50.

Graft dehiscence has been reported from 0% to 8% by various authors. [27,30 - 32] The reasons cited for dehiscence are eye trauma, patient rubbing his eye vigorously and inclusion of tenon’s capsule with the graft. However, in our study no graft dehiscence was reported.

Graft retraction has been reported from 1% to 11% in various studies. [27-32] we experienced graft retraction in 11 cases (27.5%) out of 40 cases, 2 cases had inferior graft retraction and 9 cases had medial edge recession which resolved without any intervention by the end of one month with no effect on the final outcome of operation. Authors reported that the risk of graft retraction could be minimised with meticulous dissection of subepithelial graft tissue. [30] Wit et al [27] postulated that sutureless and glue free graft resulted in an even tension across the whole of the graft interface and no direct tension on the free graft edges resulting in reduced stimulus for the formation of subconjunctival scar. The increased number of medial edge graft recession in our study seems to be due to graft size equal to the size of bare sclera.

In our study, graft edema was reported in one case and none of our patients had subgraft hemorrhage and graft displacement.

Visual improvement was seen in 6 cases. There was no pain, irritation and foreign body sensation. All patients were comfortable and highly satisfied. Cosmesis was excellent and in many cases healing was so good that graft was not noticeable after 3 months.
CONCLUSION

Sutureless and gluefree conjunctival autograft technique is safe, simple, less time consuming procedure with negligible recurrence. It gives excellent cosmesis and is also cost effective.

REFERENCES

20. Dunn JP, Seamone CD et al. Development of scleral ulceration and


