

Original Research Article

Reduced Sperm Count as a Reason for Male Infertility - An Analytical Study in a Fertility Clinic in a Rural Medical College

G.Rekha¹, V.Rajitha¹, K.Y.Manjunath²

¹Assistant Professor, VMKV Medical College, Salem – 636308. Tamil Nadu, India. ²Professor, Annapoorna College of Medical Sciences, Salem, Tamil Nadu, India.

Corresponding Author: G.Rekha

Received: 02/05//2014

Revised: 21/05/2014

Accepted: 27/05/2014

ABSTRACT

Introduction: Infertility is a common problem which affects a significant percentage of all married couples. In developing countries it is considered as a social stigma. On account of this many couples seek remedies which would bring an end to their quest for a progeny. This study aims to highlight the possible causes of reduced sperm count and sperm motility for establishing the male factor in a study of infertile couples attending a fertility clinic in a rural medical college hospital.

Materials and Methods: Sperm samples were collected from 55 males attending a fertility clinic and were subjected to analysis using an automatic sperm analyzer. The results were tabulated and subjected to morphological and statistical analysis.

Result: The mean semen volume was 1.60 ml. The mean liquefaction duration was 17.75 minutes. The mean sperm count was 30 million per ml. Azoospermic males were 16. Oligospermic males were 19. Normal morphology was seen in 20 cases. Motile sperms amounted for 30.94%. The mean ph was 7.5. The rapid progressive motility was 22.13%. Non progressive motility was 8.63%. Immotility was 32.12%. Normal morphology of sperms was 11.30%. Motile sperm concentration was 17.20 million per ml. Progressive motile sperm concentration was 12.97 million per ml. Functional sperm concentration was 4.18 million per ml. Average velocity of sperm was 5.64 microns per second.

Conclusion: From the present study it is evident that there has been a decline in the sperm count of men which is a positive finding and a factor for male infertility. Since the sample size is modest extensive study has to be done in a larger sample size to obtain a conclusive idea for factors responsible for decline in sperm count.

Key words: Semen, analysis, infertility, sperm, sperm count, motility.

INTRODUCTION

It is a natural desire of human beings to propagate their lineage and is a part and parcel of human evolution. The inability to conceive and produce a progeny results in depression in couples. This infertility or sub fertility forces couples to seek a solution as the problem results in a social stigma. In the modern era with advancements in the medical field, there are various assisted reproductive techniques available to achieve a pregnancy in infertile/sub fertile couples. However the methods available are not foolproof as a small percentage of couples the causative factor is not known.

The purpose of male evaluation among the couple attending the infertility clinic is to identify and treat the correctable cause of sub fertility and sometimes men attending the infertile clinic seek an explanation for problem which can be identified during the male infertility evaluation. Male infertility evaluation can uncover significant medical and genetic pathology that could affect the patient's health or his offspring. Male and female factors coexist in about one third of cases while one third of the cases are secondary to male factors only. Therefore evaluation of both partners is essential and in women gynecological evaluation should proceed simultaneously along with evaluation of the component also. male Appropriate evaluation and treatment of sub fertile men are critical in delivering suitable remedy to the infertile couples. Hence semen analysis alone is sufficient to adequately evaluate the male partner. By diagnosing the treatable male factor pathology which is cost effective can reduce the woman of invasive procedures and potential complications assisted reproductive associated with techniques and decrease the risk of multiple births.

Infertility is a major problem prevailing world wide in about 15% of all couples and male factor contributes to 50% among them. ^[1] A recognizable decline in the semen quality been observed in the south Indian population.^[2] Infertility affects 1 in 5 couples in the reproductive age group and in most of the infertility cases are idiopathic.^[3] Reduction in the semen quality may be because of genetic factors, lifestyle, exposure to pollutants and stress. In most of the infertile men the reason for spermatogenic failure is unknown and it can be termed as idiopathic male infertility. Precise evaluations of seminal parameters of sub fertile men are essential in the infertility clinic to conclude the probable cause of the

infertility and treatment for the same. The present study aims to document the pattern of seminal parameters of subfertile men and the fertile men and thereby to correlate age of the infertile men with the motility of sperm.

MATERIALS & METHODS

This descriptive study was done in 55 male partners of couples attending the Infertility clinic of Vinayaka Missions hospital, Salem, Tamil Nadu. The semen sample was collected from male partners of couples following sexual abstinence of three days. The semen sample was collected in sterile plastic containers, the date and time of the sample collection was documented. Semen volume was measured and the liquefaction duration was observed .The entire analysis of semen profile was done in the fresh samples. The semen sample was subjected to automated sperm quality analyzer. Based on the WHO guidelines 2010, ^[4] the parameters of the semen like volume, Ph, WBC concentration, sperm concentration, motility, immotility, morphology of the sperm were analyzed. The age of the individual was recorded at the time of sample collection and was analyzed in relation with the motility factor. Statistical Analysis

The parameters obtained from the study were statistically analyzed for validating the

were statistically analyzed for validating the study using SPSS software version 16. Paired sample "t" test was done to ascertain the 'p' value for significance of the study.

RESULTS

The mean semen volume was 1.60ml (Table-1). The mean liquefaction duration was 17.75 minutes (Table-1). The mean sperm count was 30 million per ml (Table-1). Azoospermic males were 16 and Oligospermic males were 19 (Table-1). Normal morphology was seen in 20 cases. Motile sperms amounted for 30.94%. The

mean ph was 7.5 (Table-3). The rapid progressive motility was 22.13% (Figure 1). Non progressive motility was 8.63% (Figure 1). Immotility was 32.12% (Figure 2). Normal morphology of sperms was 11.30% (Figure 2). Motile sperm concentration was 17.20 million per ml. Progressive motile sperm concentration was 12.97 million per ml. Functional sperm concentration was 4.18 million per ml (Figure 2). Average velocity of sperm was 5.64 microns per second (Table-1).

Table -1: Mean values of Semen parameters of Infertine Men.								
Semen parameters	Normal fertile Men N = 20	Oligo/asthen/tetatozoospermic Men N=19	Azoospermic Men N=16					
Volume(ml)	1.6	1.6	1.5					
Age(years)	35.25	36.73	33.68					
Liquefaction duration(min)	18	16.84	18.437					
РН	7.5	7.7	7.3					
Sperm concentration(million/ml)	65.3	25.02	0					
Motility (%)	64.4	28.42	0					
Rapid progressive motility (%)	51.55	14.84	0					
Non progressive Motility (%)	12.85	13.05	0					
Immotility (%)	35.6	60.78	0					
Morphology normal (%)	16.4	9.52	0					
Motile sperm concentration(million/ml)	43.89	7.72	0					
Progressive motile sperm concentration (million/ml)	34.67	4.26	0					
Functional sperm concentration (million/ml)	12	0.54	0					
Velocity (mic/sec)	12.3	4.63	0					
	Total p	er ejaculation						
Semen Parameters	Normal Men	Oligo/Astheno/Teratozoospermic Men	Azoospermic					
Total sperm number (million)	127.87	45.65	0					
Total motile sperm (million)	70.91	13.67	0					
Total progressively motile sperm (million)	38.3	7.37	0					
Total functional sperm (million)	18.2	1.53	0					
Total morphology normal (million)	17.92	2.12	0					

Table -1. Mean	volues of	Somon	noromotore	of Infortilo Mon
1 abic -1. Micali	values or	Semen	Dai ameters	or intermente men.

Table-2: S.Dvalues of semen parameters of Infertile Men.

Semen	Normal	Oligo/Astheno/	Azoospermic	
parameters		Teratozoospermic		
Volume	.66094	1.09558	.66380	
Liquefaction Duration	3.7696	3.41993	5.3903	
Ph	.42920	.30589	.40311	

The mean of total sperm number per ejaculate was 57.84 million (Figure 3). The mean of total motile sperms per ejaculate was 28.19 million (Figure 3). The mean of total functional sperms per ejaculate was 6.57 million (Figure 3). The mean of total progressive motile sperm per ejaculate was 20.53 million (Figure 3). The mean of normal morphology per ejaculate was 6.68 million (Table-1).

In the 19 Oligospermic males, asthenospermia and teratoazoospermia were observed. The SD for the volume of semen was 1.0955 (Table-2). The SD for liquefaction duration was 3.419 (Table-2). The SD for ph was 0.3058 (Table-2).

Paired Student 't' test was done to ascertain the differences between normal males and Oligospermic/Asthenospermic/ teratoazoospermic males (Table-3). Paired student 't' was done to ascertain the differences between the normal males and Azoospermic males (Table-4).

Figure 1: Semen values (Mean) in Infertile Men.

Figure 3: Sperm parameters Per Ejaculation in Infertile Men.

DISCUSSION

reliable Semen analysis is а analytical investigation for diagnosing male component in infertility. Evaluating the male factor for infertility in a meticulous manner will be indispensible in diagnosis. ^[5] In the present study only semen analysis was used as a tool for evaluation of male infertility. Asthenozoospermia was found to be a common abnormality in many studies. ^[5] In study asthenospermia and the present azoospermia were more predominant. Normospermic was approximately one third of the cases. This study contained subjects whose age ranged between 21 and 45 years and the semen volume remained at an average of 1.6ml. According to a study performed in 2003, inverse effect of age was observed on sperm motility and semen volume. ^[6] Age of the male component has a bearing on the volume of semen, motility of sperm and the morphological characteristics of sperm. ^[7] In the present study also there has been a significant decline in the volume and motility of sperms as the age increases. The incidence of Oligospermic and Azoospermic samples were marginally higher than the normal samples. This was in accordance with study where а Oligospermic semen was more than normal semen.^[8] In the present study there has been

a reduction in sperm motility but in an earlier study the age does not affect the sperm function in older people.^[9]

In the present study semen analysis is a determining yardstick for male

component in infertility. However other male factors like rare functional defects may affect the outcome even if the semen analysis is normal.^[10]

	Paired Differnces							
Normal Men vs Oligo/Astheno/Teratozoospermic Men	Mean	Std.Deviation	StdError. Mean	95%confidence interval of Difference Upper Lower		t	dt	Sig.2 (tailed)
Age	-1.157	7.25919	1.66537	-4.65671	2.34093	695	18	.496
Volume	1052	1.20852	.27725	68775	.47723	380	18	.709
Liquefaction duration	1.052	5.42088	1.24364	-1.56015	3.66541	.846	18	.408
Ph	2631	.586	.134	545	.019	-1.957	18	.066
Sperm concentration	5.686	33.893	7.775	40.532	73.204	7.314	18	.000
Motility	5.718	19.369	4.443	47.848	66.519	12.869	18	.000
Immotility	-2.573	26.259	6.024	-38.393	-13.080	-4.272	18	.000
Rapid progressive motility	4.423	18.730	4.296	35.209	53.264	10.295	18	.000
Non progressive Motility	1052	14.448	3.314	-7.069	6.858	032	18	.975
Morphology Normal	7.000	19.359	4.441	-2.330	16.330	1.576	18	.132
Progressive Motile sperm concentration	3.0447	16.937	3.885	22.283	38.610	7.836	18	.000
Functional Sperm concentration	1.155	8.880	2.037	7.272	15.832	5.671	18	.000
Velocity	7.684	4.1506	.9522	5.683	9.6847	8.070	18	.000

Table 3. Paired	Student 't'	test for normal	and Oligo/Asthen	0/Terstozoos	normic malos
rabic 5. ran cu	Student t	test for norman	and Ongo/Asthen	0/ 1 CI at02005	per mates

Table 4: Paired Student 't' test for normal and Azoospermic males.

Normal Men	Paired differences					t	dt	Sig.2
vs Azoospermic Men	Mean	Std Deviation	Std error mean	95% confidence interval of the difference				(tailed)
Wien				Upper limit	Lower limit			
Age	1.93	9.726	2.431	-3.245	7.120	.797	15	.438
Volume	031	.8459	.2114	482	.4195	148	15	.884
Liquefaction Duration	312	5.907	1.476	-3.460	2.835	212	15	.835
Ph	.250	.605	.1513	0726	.572	1.651	15	.119
Sperm concentration	6.58	36.893	9.223	46.184	85.502	7.139	15	.000
Motility	6.25	18.504	4.626	52.639	72.360	13.511	15	.000
Rapid progressive motility	5.15	15.954	3.988	42.998	60.001	12.912	15	.000
Non progressive motility	1.10	4.575	1.143	8.562	13.438	9.617	15	.000
Immotility	3.75	18.504	4.626	27.639	47.360	8.106	15	.000
Morphology Normal	1.59	7.531	1.882	11.924	19.950	8.464	15	.000
Progressive motile sperm concentration	3.53	19.660	4.915	24.892	45.84	7.196	15	.000
Functional sperm concentration	1.20	9.232	2.308	7.105	16.944	5.210	15	.000
Velocity	1.28	2.578	.6446	11.500	14.249	19.971	15	.000

CONCLUSION

Semen Analysis is a reliable parameter for assessing the male factor in

infertile couples. However reduction in sperm count along with increasing age will have a detrimental effect on couples who are trying to conceive. The findings obtained from the present study can be inferred as guideline while treating the male component in this part of the world. While investigating the male factor due attention should be paid other functional rule out and to constitutional diseases. Since the number of samples in the present study is very small, the authors are under preparation to enlarge the number of samples to conduct the study with the same parameters.

REFERENCES

- S. Bhasin, D. M. De Kretser, and H. W. G. Baker . Pathophysiology and Natural History of Male Infertility journal of clinical endocrinology and metabolism,1994, Vol. 19, No. 6
- Adiga, S.K., Jayaraman, V., Kalthur, G., Upadhya, D., Kumar, P., 2008. Declining semen quality among south Indian subfertile men: A retrospective study. J. Hum. Reprod. Sci. 1, 15-18.
- 3. SwethasmithaMishra,Rajeev Kumar, Neena Malhotra, Rima Dada. Expression of PARP1 in primary infertility patients and correlation with DNA fragmentation index a pilot study .Journal of the anatomical Society of India 62 (2013) 98-104.
- 4. World Health Organization 2010.WHO laboratory manual for

the examination and processing of human semen - 5th edn p-225.

- R.A.Adenij., O.Olayemi.et al. Pattern of semen analysis of male partners of infertile couples at the University College Hospital, Ibadan. WAJM Vol.22 No.3 September 2003. 243-245.
- 6. Nadia A.S.Aleisa., Semen characteristics of fertile and subfertile men in a fertility clinic and correlation with age. Journal of King Saud University-Science (2013) 25; 63-71.
- 7. Kidd SA, ESkenazi B, Wyrobek AJ. Effects of male age on semen quality and fertility: a review of literature. In FertilSteril. 2001 Feb; 75(2):237-48.
- AT Owalabi, OB Fasubaa, SO Ogunniyi. Semen quality of male partners of infertile couples in Ile-Ife, Nigeria. In Nigerian Journal of Clinical practice: Jan-Mar 2013: Vol 16; Issue 1; 37-40.
- Marimuthu.P, M.C. Kapilashrami, M M. Misro., et al. Evaluation of trend in semen analysis for 11 years in subjects attending a fertility clinic in India. Asian J Androl 2003 Sep; 5: 221-225.
- 10. CsillaKrausz., Male infertility: pathogenesis and clinical diagnosis; Best Practice & Research Clinical Endocrinology & Metabolism. 25(2011). 271-285.

How to cite this article: Rekha G, Rajitha V, Manjunath KY. Reduced sperm count as a reason for male infertility - An analytical study in a fertility clinic in a rural medical college. Int J Health Sci Res. 2014;4(6):46-51.
