In Vitro Antifungal Susceptibility Pattern of Oropharyngeal and Oesophageal Candida Species in HIV Infected Patients

Poonam Chanderlal Sharma¹, Sanjaykumar Rajaram More¹*, Sharmila Sanjay Raut¹, Vimal Shriram Rathod¹

¹Department of Microbiology, Dr. Shankarrao Chavan Government Medical College, Nanded- 431 601, Maharashtra, India

*Correspondence Email: dr.sanjaymore@yahoo.co.in

ABSTRACT

Background: The widespread use of the antifungal agent fluconazole for therapy and prophylaxis in HIV infected patients has resulted in fluconazole resistant strains of C. albicans and an increased frequency of non-albicans Candida strains, especially among patients with late-stage AIDS.

Aim: To isolate, identify and to do the antifungal susceptibility testing Candida species (oropharyngeal and oesophageal) in HIV infected patients.

Method: Two hundred HIV positive cases were selected for this study. Identification of Candida species was done by conventional standard techniques and the Kirby Bauer disk diffusion method was used to test the susceptibility of Candida isolates.

Findings: The resistance pattern of C. albicans was 34.07% resistant to Fluconazole, 10.99% resistant to Voriconazole, 7.69% resistant to Ketoconazole, 6.59% resistant to Itraconazole, 2.19% resistant to Clotrimazole and 1.09% resistant to Amphotericin B. While resistance pattern of Non C. albicans was 16.95% resistant to Fluconazole, 10.17% resistant to Voriconazole, 13.56% resistant to Ketoconazole, 13.56% resistant to Itraconazole, 13.56% resistant to Clotrimazole and 1.69% resistant to Amphotericin B.

Conclusion: Identification of Candida to the species level has become compulsory to assist the selection of appropriate antifungal agents in treatment of invasive candidiasis because most of the Non C. albicans exhibit reduced Fluconazole susceptibility.

Keywords: Fluconazole, C. albicans, Non C. albicans

INTRODUCTION

Candidiasis is undoubtedly the most common fungal infection in HIV infected individuals. It manifests most commonly as thrush, oropharyngeal candidiasis and may also present as oesophagitis and even skin rash. [¹] C. albicans is the predominant species causing candidiasis and may be found as a sole pathogen or mixed with other non-albicans species. Some data suggest that non-albicans strains of Candida are less clinically relevant than strains of C. albicans when they are present simultaneously. The widespread use of the
antifungal agent fluconazole for therapy and prophylaxis in HIV infected patients has resulted in fluconazole resistant strains of *C. albicans* and an increased frequency of non-albicans *Candida* strains, especially among patients with late-stage AIDS. In one prospective study conducted among HIV-infected adults the estimated rate of carriage of fluconazole resistant *C. albicans* declined since the introduction of highly active antiretroviral therapy (HAART).\(^2\)

Aims and objectives

- To isolate and identify *Candida* species (oropharyngeal and oesophageal) in HIV infected patients.
- To do the antifungal susceptibility testing of *Candida* isolates.

MATERIALS AND METHODS

Two hundred HIV positive cases with clinically suspected oropharyngeal and oesophageal candidiasis of all age group and both sexes attending ART Centre of tertiary care hospital were selected for this study. Patients were explained about the study with informed consent. Clinical details were noted in the proforma and samples were obtained.

Identification of *Candida* species was done by conventional standard techniques using Gram’s stain, cultural character on Saboraud dextrose agar, germ tube test, morphology on corn meal agar, colour difference on Hichrome Candida differential agar (CHROM agar) and sugar assimilation test by using HIMEDIA candida identification kit KB006.

The Kirby Bauer disk diffusion method was used to test the susceptibility of *Candida* isolates following the Clinical and Laboratory Standards Institute (CLSI) guidelines M44-A for antifungal disk diffusion susceptibility testing of yeasts. Plates were incubated for 24 hours.

![Figure 1: Antifungal sensitivity testing by Kirby Bauer disc diffusion method on Glucose methylene blue mueller hinton agar.](image)
for 3-15 min to allow for any excess surface moisture to be absorbed before applying the drug-impregnated disks. Variations in inoculum density were avoided by ensuring that the degree of turbidity level was as similar as possible.

Application of disks to inoculated agar plates

Discs applied were Fluconazole (25 µg), Voriconazole (1 µg), Amphotericin B (20 µg), Itraconazole (10 µg), Clotrimazole (10 µg) and Ketoconazole (30 µg). Antimicrobial disks were dispensed onto the surface of the inoculated agar plate with a forceps. Each disk was pressed down to ensure complete contact with the agar surface and they were distributed evenly so that they were no closer than 24 mm from center to center. Because the drug diffuses almost instantaneously, a disk was not removed once it had come into contact with the agar surface. Instead, a new disk was placed in another location on the agar. The plates were inverted and incubated at 35-37°C for 15 min after which the disks were applied.

Reading the plates and interpreting the results

Plates were examined after 20-24 hours of incubation. For satisfactorily streaked plates with the correct inoculums, the resulting zones of inhibition were uniformly circular and there was a semi confluent lawn of growth. The plate was held a few inches above a black, nonreflecting background illuminated with reflected light. The zone diameters were measured to the nearest whole millimeter at the point at which there was a prominent reduction in growth. Pinpoint micro colonies at the zone edge or large colonies within a zone were encountered frequently and these were ignored. Whenever these colonies were sub cultured and retested, identical results were usually obtained, i.e. a clear zone with micro colonies at the zone edge or large colonies within the zone. Plates were read at 48 hours only when insufficient growth was observed after 24 hours incubation.

Interpretation of the disk diffusion test results

A susceptible category implied that an infection due to the strain may be appropriately treated with the dose of antimicrobial agent recommended for that type of infection, unless otherwise contraindicated. This was obtained after measurement of the zone diameter to the nearest whole mm and compared with reference values. The susceptible-dose dependent (intermediate) category included isolates with antimicrobial agent MICs that approach usually attainable blood and tissue levels and for which response rates may be lower than for susceptible isolates. Susceptibility was dependent on achieving the maximal possible blood level. This was obtained after measurement of the zone diameter to the nearest whole mm and compared with reference values. Resistant strains were those that were not inhibited by the usually achievable concentrations of the agent with normal dosage schedules or when zone diameters have been in a range at which clinical efficacy has not been reliable in treatment studies. This was obtained after measurement of the zone diameter to the nearest whole mm and compared with reference values.

RESULTS AND OBSERVATIONS

From 200 samples, the total number of *Candida* species isolated was 150.

Of 150 species isolated, *Candida albicans* was the most common species isolated 60.67%. Non *Candida albicans* isolates were 39.33% of which most common was *C. dublinienses* 25.33%, *C. krusei* 12.00%, *C. tropicalis* 1.33% and *C. glabrata* 0.67%. Occurrence of different species of *Candida* in isolates is shown in Table I.
Table I: Occurrence of different species of *Candida* in isolates

<table>
<thead>
<tr>
<th>Candida species</th>
<th>Number of species</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>91</td>
<td>60.67%</td>
</tr>
<tr>
<td>C. dubliniensis</td>
<td>38</td>
<td>25.33%</td>
</tr>
<tr>
<td>C. krusei</td>
<td>18</td>
<td>12%</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>02</td>
<td>01.33%</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>01</td>
<td>00.67%</td>
</tr>
<tr>
<td>Total</td>
<td>150</td>
<td>100%</td>
</tr>
</tbody>
</table>

The resistance pattern of *C. albicans* was 34.07% resistant to Fluconazole, 10.99% resistant to Voriconazole, 7.69% resistant to Ketoconazole, 6.59% resistant to Itraconazole, 2.19% resistant to Clotrimazole and 1.09% resistant to Amphotericin B. While resistance pattern of Non *Candida albicans* was 16.95% resistant to Fluconazole, 10.17% resistant to Voriconazole, 13.56% resistant to Ketoconazole, 13.56% resistant to Itraconazole, 13.56% resistant to Clotrimazole and 1.69% resistant to Amphotericin B. Antifungal sensitivity pattern of *Candida* species isolated is shown in table II.

Table II: Antifungal sensitivity patterns of Candida species isolated

<table>
<thead>
<tr>
<th>Candida species</th>
<th>Antifungal drugs tested</th>
<th>Flu</th>
<th>Vor</th>
<th>Ket</th>
<th>Itr</th>
<th>Clo</th>
<th>Amp B</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>R</td>
<td>31</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>34.07</td>
<td>10.99</td>
<td>07.69</td>
<td>06.59</td>
<td>02.19</td>
<td>01.09</td>
</tr>
<tr>
<td>C. dubliniensis</td>
<td>R</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>15.79</td>
<td>07.89</td>
<td>10.53</td>
<td>10.53</td>
<td>13.16</td>
<td>02.63</td>
</tr>
<tr>
<td>C. krusei</td>
<td>R</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>16.67</td>
<td>11.11</td>
<td>11.11</td>
<td>11.11</td>
<td>11.11</td>
<td>0</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>R</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>R</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Non Candida albicans</td>
<td>R</td>
<td>10</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>16.95</td>
<td>10.17</td>
<td>13.56</td>
<td>13.56</td>
<td>13.56</td>
<td>1.69</td>
</tr>
</tbody>
</table>

Flu → Fluconazole
Vor → Voriconazole
Ket → Ketoconazole
Itr → Itraconazole
Clo → Clotrimazole
Amp B → Amphotericin B

Figure 2: The resistance pattern of *C. albicans* and Non candida albicans.
DISCUSSION

In our study resistance of *C. albicans* to Fluconazole (34.07%) was similar to other studies by Usharani D M et al. [3] (37.57%), Deorukhkar et al. [4] (5.5%), Njunda et al. [5] (74.2%) and Nweze et al. [6] (16.7%).

In our study resistance of *C. albicans* to Voriconazole was higher (10.99%) as compared to study by Nweze et al. [6] (1.9%). In our study resistance of *C. albicans* to Ketoconazole was 7.69%, while in studies by Deorukhkar et al. [4] and Njunda et al. [5] it was 8.33% and 17.2% respectively which was similar to our study.

6.59% of the *C. albicans* isolates were resistant to Itraconazole. While 2.5%, 4.16% and 11.1% were found resistant in studies by Usharani D M et al. [3], Deorukhkar et al. [4] and Nweze et al. [5], respectively which correlated with our study.

In our study, 2.19% of the *C. albicans* isolates were resistant to Clotrimazole, which was in accordance to study by Usharani D M et al. [3] (2.5%). While it was higher (35.6%) in the study by Njunda et al. [5] Resistance of *C. albicans* to Amphotericin B was lower (1.09%) as compared to study by Njunda et al. [5] (54.4%) and Malar S et al. [7] (11.2%). Similarly, non *Candida albicans* has also shown an increased resistance to azoles as in other studies conducted by Usharani D M et al. [3] and Deorukhkar et al. [4].

CONCLUSION

Though *Candida albicans* continues to be the common & important pathogen among the *Candida* species, there is a drastic increase in the incidence of other species like *Candida dublieniens*, *Candida krusei*, *Candida tropicalis* and *Candida glabrata*. The increasing emergence of non-*Candida albicans* seems to be associated with HIV pandemic.

Identification of *Candida* to the species level has become compulsory to assist the selection of appropriate antifungal agents in treatment of invasive candidiasis because most of the Non *Candida albicans* exhibit reduced Fluconazole susceptibility. The long-term use of azoles in the prophylaxis of systemic mycoses can result in the selection of *Candida* isolates that are more resistant to azole therapy.

The morbidity and risk associated with Candidiasis, along with increased incidence of treatment refractory Candidiasis as well as the high incidence of AIDS, makes it important that species identification of *Candida* isolates should be done along with antifungal susceptibility testing in most of the tertiary care laboratories.

ACKNOWLEDGEMENT

Staff of Microbiology Department, ART centre, Study patients.

REFERENCES

4. Deorukhkar S., Katiyar R., Saini S. Species Identification and Antifungal susceptibility pattern of Candida

**