Diagnostic Utility of Specific Red Cell Adherence (SRCA) Test in Various Prostatic Lesions

Rajeshwari K1*, Dravid NV1**, Patil AV2***, Nikumbh DB1****, Oswal SJ1*, Karibasappa GN1****, Tayade YR1*

*Assistant Lecturer, **Professor and Head, ***Professor, ****Associate Professor
1Department of Pathology, A.C.P.M Medical College Dhule, Maharashtra.
2Department of Urology, A.C.P.M Medical College Dhule, Maharashtra.
3Department of Community Dentistry, A.C.P.M Dental College Dhule, Maharashtra.
4Correspondence Email: ujwalgk@gmail.com

ABSTRACT

Introduction: In malignant transformation of tumors, the A and B blood group antigens which are normally present on various body tissues are lost. We have made an attempt to differentiate prostatic lesions between benign, premalignant and malignant lesions through this study. As histological assessment is not an accurate indicator of risk of progression of malignancy. The loss of ABH reactivity correlated significantly with the stage of tumor development and histological grading of malignancy. We have studied is antigens A, B, and H in benign, premalignant and malignant lesions in prostatic lesions by use of Specific Red Cell Adherence (SRCA) test.

Materials and methods: A total of 41 prostatic lesions were collected between Jan2012- June 2012 and Specific Red Cell Adherence (SRCA) test was performed on the lesions. The results were then evaluated.

Results: A total of 41 prostatic cases – 34 cases (82.92%) benign lesions showed strongly positive at the epithelium of hyperplastic acini, 5cases (12.19%) premalignant showed weakly positive and 2 cases (4.87%) malignant lesions showed uniformly negative. We found statistically significant relationship of antigenic expression in benign, premalignant and malignant lesions.

Conclusion: Specific Red Cell Adherence (SRCA) test is an early indicator of risk of progression of malignancy. It also helps in predicting recurrences and overall survival rate of patients. SRCA technique offers advantage of being highly economical, cost-effective, and reliable as compared to immuno peroxidase, flow cytometry and immunohistochemical staining. It not only improves accuracy but also reproducibility as it does not require extensive training.

Keywords: Specific red cell Adherence (SRCA), Isoantigens, Prostatic lesions.

INTRODUCTION

The blood group antigens [A, B and O (H)] are expressed in normal tissues and body cavity fluids of the human body other than red blood cells known as isoantigens as per Manju Sharma et al (1) and demonstration of these isoantigens was done through the procedure of Mixed cell Agglutination reaction (MCAR) technique in cancer by Kovarik S et al. (2) Examples of these include endothelial cells lining blood and lymph vessels, squamous epithelium of
tongue and cervix, columnar epithelium of
gastric and bronchial mucosa and
transitional lining cells of urinary bladder.

The diagnosis of prostatic lesions
especially the prostatic adenocarcinoma is
challenging and surprising to the
pathologist. As these carcinomas have
various histomorphological patterns of
presentation with minimal cytological and
architectural atypia in limited tissue
fragment like needle biopsy. The
histomorphological variants in prostatic
tumor like Atrophic, foamy gland,
pseudohyperplastic and certain subtypes of
ductal adenocarcinoma represent the most
common causes of under-diagnosed cancer
when the pathologist is not familiar with
these entities, and therefore those are called
“pseudobenign” carcinomas [1] or
carcinomas mimicking benign lesions. [6-8]

Hence Specific Red Cell Adherence
test can be used as alternative to other
diagnostic techniques as it is economically
cheap, cost-effective, and easily
reproducible. Specific Red Cell Adherence
test can be used as an adjuvant test and
supplemented routine morphological study
in diagnosis of pseudo benign carcinomas.

Aim and Objectives
- To study isoantigens A, B and H in
 benign, premalignant and malignant
 lesions of prostate by use of Specific
 Red Cell Adherence (SRCA) test.
- Diagnostic utility of Specific Red
 Cell Adherence (SRCA) test in
 various Prostatic Lesions.

MATERIALS AND METHODS
A total of 41 prostatic lesions were
evaluated as benign premalignant and
malignant by histopathological examination
during the period of 6 months from Jan 2012
to June 2012.

Tissue preparation:

The biopsies included in this study
were TURP and prostatectomy specimens.
All biopsies specimens were fixed in 10 %
buffered formaldehyde, paraffin embedded,
sectioned at 4 microns, and stained with
hematoxylin and eosin. Sections (4 microns)
from the tumor biopsies were placed on
albumin-coated slides. Sections were
deparaffinized in xylene and brought to
water through graded ethanol (100%).

Specific red cell adherence test:

Specific red cell adherence test was
performed on paraffin embedded sections to
detect the intensity of isoantigens A, B and
H (O) on the epithelial cell surface by a
three layer sandwich technique, as described
by Walkers J [9] and Strauchen JA et al. [10]
Commercially available Anti A, Anti B, and
Anti AB antisera from Span Diagnostic
Limited and Ulex europaeus lectin (Anti H)
were used in our study. These sera had
average agglutination titres of 512. Slides of
4-5 micron section were deparaffinized and
brought to water.

1. The slides were immersed in Tris buffered
 saline 0.05 M (pH 7.4) for 30 minutes.
2. The slides were covered with isologous
 antisera with Anti-A, -B and -O according to
 patient’s blood group, and incubated for one
 hour with in a moist chamber at room
 temperature.
3. The slides were then dipped in Tris
 buffered saline three times with occasional
 stirring to remove the unreacted antisera.
4. A few drops of 2-5% isologous indicator
 RBC’s suspension were added to the
 sections and incubated for 20 minutes in
 group A or B and one hour for group O.
5. The slides were inverted over a support in
 a Petridis containing Tris buffered saline
 such that the undersurface of the slide just
 touched the solution, and kept for five
 minutes to settle down the unreacted RBCs.
6. The slides were observed under low
 power magnification and photographed
 immediately.
7. The test had its own positive internal control like RBCs, endothelial cells of blood vessels and negative internal control was connective tissue like fat and fibrous tissue. Interpretation:
In the present study, isoantigenicity of the epithelium was said to be completely preserved when there was continuous chain of adherence of RBCs was seen at the epithelium in benign prostatic lesions (Figure 1).

Partially preserved isoantigenicity of the epithelium was said when there was focal adherence of RBCs at the epithelium in premalignant prostatic lesions (Figure 2, 3). Total deletion of isoantigenicity of the epithelium was said when there was total absence of adherence of RBCs at the epithelium in malignant prostatic lesions (Figure 4).
RESULTS

Specific Red Cell Adherence (SRCA) test in benign prostatic lesions:
Complete preservation of antigen (97.05%) was seen in 33 cases out of 34 Benign Prostatic Hyperplasia (BPH). The stroma in 34 cases of BPH was found to be negative except for an occasional streak of positivity in blood vessels which served as a built-in control. In 20 of the 34 cases, the prostatic stroma showed histologic evidence of prostatitis. In these areas SRCA test showed a patchy agglutination.

Specific Red Cell Adherence (SRCA) test in premalignant lesions:
Partial preservation of antigen (80%) was seen in 4 cases out of 5 premalignant lesions which includes prostatic atrophy and prostatic intraepithelial neoplasia (PIN). The stroma of 5 cases of premalignant lesions of prostate was found to be negative except for
an occasional streak of positivity in blood vessels.

Specific Cell Adherence (SRCA) test in malignant lesions:

Complete deletion of antigen (100%) was seen in 2 cases out of 2 malignant lesions which included primary adenocarcinoma of prostate. Scanty stroma separating the tumour acini showed occasional streak of agglutination in which RBC’s were present in blood vessels.

The results of Specific Cell Adherence (SRCA) test on various prostatic lesions were tabulated as shown in Table No 1.

SRCA Test Results

<table>
<thead>
<tr>
<th>SRCAT</th>
<th>Beneficial</th>
<th>Premalignant</th>
<th>Malignant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag. Complete preservation</td>
<td>33 (80.48%)</td>
<td>–</td>
<td>–</td>
<td>33 (80.48%)</td>
</tr>
<tr>
<td>Ag. Partial preservation</td>
<td>1 (2.43%)</td>
<td>4 (9.75%)</td>
<td>–</td>
<td>5 (12.19%)</td>
</tr>
<tr>
<td>Ag. Complete deletion</td>
<td>–</td>
<td>1 (2.43%)</td>
<td>2 (4.87%)</td>
<td>3 (7.31%)</td>
</tr>
<tr>
<td>Total</td>
<td>34 (82.92%)</td>
<td>5 (12.19%)</td>
<td>2 (4.87%)</td>
<td>41 (100%)</td>
</tr>
</tbody>
</table>

Table 1 Results of Specific red cell adherence test on various prostatic lesions.

DISCUSSION

The A, B and H antigens are complex carbohydrate structures found on glycoproteins and glycolipids of the cell surface of erythrocytes and most of epithelial cells. Alles of the ABO gene code for glycosyltransferases that act on the precursor of H antigen. (11) Disappearance of antigen is due to absence of A or B transferase gene expression. As a result of loss of ABH isoantigens, red blood cells do not agglutinate giving a characteristic mixed field reaction. (12) Recent studies have shown that due to tumor development there is altered glycosylation, signal transduction and apoptosis of the cell surface proteins and lipids. (13) Alteration of ABH antigens in hematologic malignancy described a very weak A antigen expression on the red cells of a patient with acute myeloid leukemia who had previously shown normal A antigen expression. Loss of A, B, or H antigens from the surface of red blood cells is now recognized as a recurrent observation in hematologic malignancy. (14, 15) There are different studies which have shown the association of various cancerous lesions and loss of ABH isoantigens as per Gao S et al (16) and Hakomori S et al. (17)

Through this study, we have made an attempt to differentiate benign and malignant tumors by the use of above concept. The technique used was Specific Red Cell Adherence (SRCA) based on the principle of Mixed Cell Agglutination as mentioned previously by Kovarik S et al. (2)

In the present work, we used the loss of the expression of ABH antigens as a marker of differentiation.

As the expression of these antigens can be detected by monoclonal antibodies, they are a better objective marker of differentiation than the more commonly used subjective histologic assessment. The presence or absence of blood group antigens has been used to predict the clinical course of patients with superficial transitional cell carcinoma of the bladder. (18,19) The red-cell adherence test has been the most widely accepted method of antigen determination, but this technique has inherent weaknesses as improper tissue preservation and improper deparaffinisation there is false negative results.

Recently, the immunoperoxidase assay has been used to detect antigens on tumor cells. There are studies that have compared patients using the red-cell adherence and immunoperoxidase methods showed similar results (89%) when assessing the presence or absence of antigen. (20) The previous studies have suggested that in gastrointestinal and ovarian carcinomas the affected group-specific isoantigens may
possibly be related to a secretion product of cells forming the tumors. Previous workers had also reported somewhat similar findings and have suggested that a loss of isoantigens in malignant tumors may be an early indicator of cellular changes prerequisite for the ability to form metastatic lesions. (21-23)

CONCLUSION

SRCA test is an early indicator of risk of progression of malignancy at cellular level. It can be used as an alternative and adjuvant to immunoperoxidase and immunohistochemical staining. It is highly economical, cost-effective and reliable. It improves accuracy and reproducibility as it does not require extensive training. It helps in predicting recurrences and overall survival rate of patient clinically.

REFERENCES

13. Le Pendu J, Marionneau S, Cailleau-Thomas A, Rocher J, Moullac-

